
CALCULATION OF THE WAVE PARAMETERS OF TWO-PHASE, ASCENDING, 

FILM FLOW BY THE METHODS OF STATISTICS 

Yu. P. Kvurt, L. P. Kholpanov, 
V. A. Malyusov, and N. M. Zhavoronkov 

UDC 532.55:541,12.012.6 

The use of statistical methods to investigate two-phase film flow in the mode of 
concurrent ascending flow is demonstrated. 

The investigation of the hydrodynamic relationships occurring at the interface of two 
phases in the case of ascending, two-phase, film flow is necessary for an understanding of 
the processes of heat and mass transfer as a whole, 

As follows from [i, 2], the complicated wave pattern developing at the surface of a 
liquid film is a consequence of the interaction of various types of waves, each of which is 
characterized by such parameters as the amplitude, frequency, and phase velocity. The wave 
parameters of film flow are usually found on the basis of curves of the distribution of a 
random quantity. To remove elements of subjectivism in such a treatment of experimental da- 
ta it is necessary to use the mathematical apparatus of the theory of the statistical evalua~ 
tion of parameters. 

The pattern of wave film flow was recorded using the method of local electrical conduc- 
tivity [I, 2], which makes it possible to record on an oscillogram the instantaneous thick- 
ness of a liquid film in the form of a continuous curve, 

Under the assumption that the given realization is a steady-state random process, the 
latter can be described with the help of statistical functions: the mean value of the square 
of the random process, the distribution density, the correlation function, and the spectral 
density. 

The use of spectral analysis for the treatment of experimental data allows one to per- 
form selection both with respect to frequencies and with respect to amplitudes. In [i, 2], 
it was shown that the distribution curves of the instantaneous thicknesses of a liquid film 
constructed on the basis of histograms are close to a normal distribution law. We are confined 
only to the correlation theory of random functions, in which case Khinchin steadiness (stead- 
iness in the broad sense) is satisfied if the mathematical expectation and dispersion of the 
random function are constant and its correlation function depends only on the difference in 
times and not on the absolute values of the times [3, 4]~ The construction of histograms 
for two halves of one realization ofthe variation of the wave surface of a liquid film showed 
their agreement, which does not contradict the assumption of the time independence of the 
probability of the Gaussian distribution. From the assumption that the process is in a stable 
state it follows that the combined probability density depends only onthe difference in 
times, while the steadiness of the initial series follows from the time independence of the 
one-dimensional and two-dimensional probability densities. In accordance with the foregoing, 
we designate as X(t) the steady random process, ergodic with respect to the correlationfunc- 
tion, which in this case can be calculated from a single realization x(t) [3, 4], 

A correlation transformation is especially effective for eliminating the influence of 
random interference. We assume that the initial random process contains some periodic com- 
ponents, i.e., 

x~) = s~) + nq), 

where s(t) is some periodic component, and n(t) is the random component. The correlation 
function of this process will also be a sum of a periodic and a random function, but if n(t) 

Institute of New Chemical Problems, Academy of Sciences of the USSR Kurnakov Institute 
of General and Inorganic Chemistry, Academy of Sciences of the USSR, Moscow. Translated 
from Inzhenerno-Fizicheskii Zhurnal, Voi. 38, No. 2, pp. 309-313, February~ 1980, Original 
article submitted May 22, 1979. 

0022-0841/80/3802-0197507.50 �9 1980 Plenum Publishing Corporation 197 



does not in turn contain hidden periodic frequencies, then the correlation function of the 
component n(t) is a decreasing function of the delay IT I [5], and for large enough IT1 the 
harmonic component stands out in pure form. 

The spectral density wascalculated numerically through a Fourier transformation of the 
correlation function, which is of independent interest, as shown above, 

Using the elements of spectral analysis, we treated the experimental data on the wave 
surface of a liquid film in the mode of ascending concurrent flow for systems of water and 
air, an aqueous glycerin solution and air, and an aqueous caprolactam solution and air with- 
in the limits of trickling densities from 0.2 to 7 cm2/sec and gas velocities from ii to 60 
m/sec. 

The normalized correlation function R(T) = R(T)/R(0) of one realization for the system 
of an aqueous glycerin solution and air at V = 34.1 m/see and q = 0.4 cm2/sec is shown in 
Fig. i. The behavior of R(T) displays some periodicity and the absence of damping, which, 
as was discussed above, is characteristic of the periodic component in the given process be- 
ing analyzed. The numerical values of the parameters of the wave flow can be obtained from 
the form of the spectral density S(m); in particular, from the location of the peaks in S(m) 
one can determine the values of the frequencies of the periodic components in the initial 
process. Since the process being analyzed is assigned in a finite interval [--L, L], the re- 
suits of the correlation transformation only give an estimate of the spectral density. 

A smoothed estimate of the normalized spectral density is presented in Fig. 2, One ac- 
tually observes the presence of a certain number of peaks in the frequency dependence of the 
spectral density. One must keep in mind, however, that in the calculation of the spectral 
density the smoothing was done using a Tukey window [3, 4], and the result of the action of 
any spectral window is characterized by the fact that narrowing the width of the spectral 
window leads to a decrease in the shift, i.e., the more clearly the sections in the spectral 
density with frequencies close to mo (one of the periodic frequencies) are isolated, the 
larger the dispersion proves to be. All this leads to the appearance of spurious peaks in 
the dependence S(m). The reliability of one or another peaks can be established using the 
confidence intervals (Fig. 2). With allowance for this, we can consider fl = 24 Hz, f2 = 
128 Hz, and f3 = 350 Hz as the most probable frequencies connected with periodic components 
in the initial wave process. In this way three main types of waves are observed in the pro- 
cess, which can be treated as perturbation waves, large waves, and ripple waves, which was 
also noted in [i, 2]. 

Thus, the introduction of such parameters as the amplitude, wavelength, and frequency 
to describe the wave structure of a liquid film is quite proper, since they correspond to 
actually existing periodic components in the variation of the wave surface of a liquid film 
in the mode of ascending concurrent flow, 

The presence of three main types of waves in the wave process during two-phase film 
flow in a pipe was shown earlier [i] on the basis of the distribution law only, The latter 
fact is also confirmed by the form of the spectral density (Fig. 2). 

In connection with the fact that the hydraulic resistance and the mass exchange in two- 
phase film flow [6] essentially depend on the wave parameters, it is interesting to determine 
them on the basis of the bringing out of hidden periodicity, using for this the well-known 
canonical form of polyharmonic expansion [7] for a wave process x(t), assigned in the finite 
interval [--L, L]; 

y (t) = Ao -4- N? (,4j cos o ) / +  B~ sin ~o/). , _ u  

i=1 

(i) 

If N (N~3m + i) values y~ = y(1), Y2 =y(2), ... YN =y(N) are known from experiment, then 
cos m~, cos m2, ..., cos mm are determined as the roots of the algebraic equation 

I 
cosln~-- ~ cos (m --1) c0-- ... -- ~m_~ cosy -- ---- a m= O, 

2 

whose coefficients ~k must satisfy the system of linear equations 
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h = i  

(i = 1, 2 . . . . .  3 / - -2m) .  

To find the m coefficients a k by the method of least squares one must solve the system 
o f  m l i n e a r  e q u a t i o n s  

N--2m 

o g .  = o. 
i = l  

A. and B. are determined from the equations 
3 3 

m m 

A j - -  2 . , ' ~  bthCos] 2~_~k., B~ 2 Z Yksin] 2~k 
m ~md m m /T/ 

k==l h ~ l  

where 0 ~ j ~ m/2. 

All the parameters Aj, Bj, and mj, which number 3m + 1 in the general case, can be de- 

termined from this algorithm using a computer. Since the number of periodic components is 
now known in advance, their choice is based on the results of [i] and of a spectral analysis 
on the presence of three main types of waves. Consequently: we set m = 3 in Eq. (i). Since 
the algorithm described is based on the method of least squares, it provides the isolation 
of the most probable average frequencies, three in the given case, 

As a result of calculations for realizations with different phase loads, we isolated 
three frequencies, each of which always fell in the appropriate range of frequencies con- 
nected with perturbation waves, large waves, and ripple waves. 

As an example in the calculation of the spectral density we found f~ = ii Hz, f~ = 102 
Hz, and f~ = 308 Hz by the method of least squares for the realizationwhichwas used in the 
present work. 

In conclusion, it is interesting to compare the frequencies connected with the three 
main types of waves and obtained by the two methods described above with the frequencies 
found earlier [i, 2] on the basis only of the distribution curves, which, for phase loads 
analogous to those of the example considered above, equal fp = 19.3 Hz for perturbation 
waves, fl = 104 Hz for large waves, and fr = 312 Hz for ripple waves. Rather good agreement 
of the f~equencies obtained by the three different methods is seen. 
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The calculations performed show that statistical methods are a reliable means for deter- 
mining the wave parameters of two-phase, ascending, film flow. 
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LONGITUDINAL DIFFUSION OF AN IMPURITY IN A PIPE 

WITH PERMEABLE WALLS 

V. M. Eroshenko and L. I. Zaichik UDC 532.542 

The problem of the spread of an impurity in a stream with fluid injection through the 
pipe walls is analyzed. 

The theory of convective longitudinal diffusion of a passive impurity in laminar and 
turbulent streams during fluid flow in pipes with impermeable walls was developed by Taylor 
[i~ 2]. In [3] the solution of this problem was constructed by the method of successive ap- 
proximations; in this way it was shown that Taylor's model is asymptotically valid as t + =, 
In the present report the solution of the diffusion equation is obtained for long times in 
the presence of fluid injection through permeable pipe walls. 

The distribution of a passive impurity in laminar and turbulent modes of flow in flat 
and round pipes without allowance for diffusion in the longitudinal direction is described 
by the equation 

! 
Oc 4- ux Oc Oc = D O (r~y(r) Oc " (1) 
-07- ' 0--7 7;#)" 

For hydrodynamically stabilized flow in the presence of injection the longitudinal and 
radial velocity components can be expressed through one function F(~; Re v) [4, 5]: 

u x = ( U o +  2C~Vx ) F' (~I) F (B) 
r o  1,2~1) = , mr = - -  V ---~1 ~ ( 2 )  

With allowance for (2), Eq. (i) takes the dimensionless form 

O'r -{- --2-- O---X+--2 \(2q) 'z ~ -  2 ~1 = ON -- ,# 0~- ~ . (3) 
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